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Abstract 

We discuss the relation of the coeffective cohomology of a symplectic manifold with the topology 
of the manifold. A bound for the coeffective numbers is obtained. The lower bound is got for compact 
Ktiler manifolds, and tbe upper one for non-compact exact symplectic manifolds. A Nomizu’s 
type theorem for the coeffective cohomology is proved. Finally, the behaviour of the coeffective 
cohomology under deformations is studied. 0 1998 Elsevier Science B.V. 
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1. Introduction 

The coeffective cohomology of a symplectic manifold (M, o) was introduced by Boucht 
[4] as the cohomology of the coeffective subcomplex (d*(M) , d) of the de Rham complex 
of M, wheredk(M) = (01 E Ak(i14) 1 UAW = O}.Anaturalquestionis tolookforarelation 
between the coeffective and de Rham cohomologies of the symplectic manifold. BouchC 
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has proved that the coeffective complex is elliptic, and hence its cohomology groups have 
finite dimension for compact symplectic manifolds. Moreover, he proved that for a compact 
K%hler 2ndimensional manifold there is the isomorphism 

Hk(A(M)) S H’(M) Vk # n, (1) 

where Hk(d(M)) denotes the coeffective cohomology group of degree k and H’(M) is 
the subspace of the de Kham cohomology group Hk(A4) consisting of those classes a E 
Hk (M) such that a A [w] = 0, or in other words, the truncated de Rham cohomology group 
of degree k. Notice that for an arbitrary symplectic manifold (compact or not) we have 
Hk(d(M)) = 0 fork 5 n - 1, where dimM = 2n. 

In [l] the authors exhibited a compact symplectic manifold R6 for which the above 
isomorphism does not hold. Moreover, R6 does not admit any K8hler structure. The harder 
task to obtain this result was the computation of the coeffective cohomology. In fact, for 
a compact nilmanifold or completely solvable manifold r/G, Nomizu’s theorem permits 
us to calculate in a very simple way the de Rham cohomology in terms of the cohomology 
of the Lie algebra of the Lie group G. A similar result for the coeffective cohomology was 
obtained in [lo]. This last result has permitted to exhibit a large family of examples [S-10]. 
Using a technique based on the long exact sequence in cohomology associated with an 
exact short sequence of complexes, we obtain in the present paper a very simple proof of 
Nomizu’s theorem for the coeffective cohomology. 

The aim of the present paper is to discuss the relation of the coeffective cohomology with 
the topology of the symplectic manifold. 

First of all, and using a technique based on the long exact sequence in cohomology associ- 
ated with an exact short sequence of complexes, we obtain that the coeffective cohomology 
groups of a symplectic manifold (44, w) of finite type have finite dimension (called the 
coeffective numbers), and moreover, they satisfy the following inequalities: 

bk@‘f) - bk+2(M) 5 Ck(M) 5 bk(M) + bk+l CM). 

As a consequence, for a compact Kahler manifold, we deduce that 

Ck(M) = h(M) - bk+2(M), k P n + 1, 

which means that the coeffective numbers of a compact K5hler manifold measure the 
jumps between the Betti numbers. The situation is dramatically different for non-compact 
symplectic manifolds. In fact, we prove that, if (M, w) is an exact symplectic 2ndirnensional 
manifold, we have 

Q(M) = bk(M) •t &+1(M) fork 2 n + 1. 

Using the above formula, we construct a non-compact K%hler manifold for which (1) is not 
satisfied. 
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We also discuss the behaviour of the coeffective cohomology when the symplectic struc- 
ture is deformed. More precisely, we prove that the coeffective cohomology of a symplectic 
manifold is invariant by isotopies, but not by pseudo-isotopies. 

2. Definitions and basic facts 

Let M be a real 2n-dimensional smooth manifold, I(M) the Lie algebra of vector fields 
on M and Ak(M) be the space of k-forms on M. A symplectic structure on M is a 2-form 
o E A2 (M) closed (that is, do = 0) and non-degenerate (that is, un # 0). The pair (M, w) 
is called a symplectic manifold. 

On the other hand, an almost Hermitian structure on a 2n-dimensional manifold M is a 
pair (g, J) of a Riemannian metric g and an almost complex tensor J such that g and J are 
compatibles: 

g(JX,JY)= g(X,Y), X,Y E X(M). 

Then it can be defined as the associated fundamental a-form (also called the Klhler form): 

w(X,Y)= g(JX,Y), X,Y E X(M). 

It is easy to see that w” # 0. Furthermore, if dw = 0, then w defines a symplectic structure 
(in this case, (g, J) is said to be an almost Kahler structure). Conversely, it is known [5,19,24] 
that given a symplectic structure w on M, there exists an almost Hermitian structure (g, J) 
such that w is its fundamental 2-form (notice that the almost Hermitian structure is not 
unique). 

A 2n-dimensional manifold is said to be a Klihler manifold if there exists an almost 
Hermitian structure (g, J) such that the fundamental 2-form w is closed and J is integrable 
(that is, J defines a complex structure on M) (for a more detailed study see [ 15-171). 

Let (M, o) be a 2n-dimensional symplectic manifold. If d denotes the exterior derivative 
on M, then we have the de Rham differential complex 

. . . + &'(M)& d(M)& Ak+'(M) -+ *.., 

whose cohomology H*(M) is the de Rham cohomology of M. Also, let 

be the subspace of Ak(M) of coeffective forms on M (in the case that we are considering 
more than one structure on the manifold we shall add a reference to the structure on the 
notation). Alternatively, we can introduce the linear mapping L : Ak (M) + Ak+* (M) 
defined by L(a) = (11 A w and hence k(M) = Ker {L : Ak(M) -_, Ak+2(M)}. Since w 
is closed, L and d commute, which implies that 

. . . + dk-‘(M) -% Ak(M) d\ dk+‘(M) + . . . 
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is a differential subcomplex of the de Rham complex. Its cohomology Hk (d(M)) is called 
coeffective cohomology of the symplectic manifold M. 

Proposition 2.1 [ 171. Let M be a 2n-dimensional symplectic manifold. Then L is injective 
fork 5 n - 1 and surjective for k 1 n - 1. 

Corollary 2.1. dk(M) = {O}for k I n - 1; and as a consequence, Hk(d(M)) = {O}for 
k(n-1. 

On the other hand, since the fundamental 2-form w is closed, it defines a de Rham 
cohomology class [w] E H2(M). Then we can consider the de Kharn cohomology groups 
truncated by the class of the fundamental 2-form o, that is, 

fik(M) = (a E Hk(M) Ja A [w] = 0). 

The relation between the coeffective cohomology and the de Rham cohomology truncated 
by [w] has been discussed in [4]. In fact, for a compact KUer manifold M BouchC has 
proved that 

Hk(d(M)) E gk(M) Vk # n, (2) 

where dim M = 2n. The result does not hold for arbitrary symplectic manifolds as we have 
proved in [l] (see also [lo]). 

Remark 2.1. A coeffective cohomology can be defined on an arbitrary manifold endowed 
with a closed 2-form. For instance, for an almost cosymplectic (2n + I)-dimensional man- 
ifold M with almost cosymplectic structure (7, G’) (that is, r] is a closed l-form and D is a 
closed 2-form such that q A Sz” is a volume form on M), we can consider the coeffective 
complex determined by a. This cohomology was introduced by Chinea et al. [6]. It has 
been also studied in [l,lO]. 

3. Exact sequences and coeffective cohomology 

The aim of this section is to relate the coeffective cohomology with the de Rham coho- 
mology by means of a long exact sequence in cohomology. As in Section 2, let M be a 
symplectic manifold of dimension 2n with symplectic form w. Then, taking into account 
the mapping L : Ak (M) ----+ A k+2(M), we consider the following natural short exact 
sequence for any degree k: 

0 + Ker L = dk(M) 4 Ak(M) & Imk+2 L + 0. (3) 

Since L and d commute, then (3) becomes a short exact sequence of differential 
complexes: 
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0 0 0 

I d I d T . . . + Imk+‘L __, In#+*L. - Imk+sL ----) . . . 

I 
L T L 

I 

L 

*I. --_, nk-$T!f) .d 
d 

Ak(A4) - Ak+l(M) + ..* 

I 

i I i I 

i 

. ..- dk-‘(M) d dk(M) d dk+' (M) + . . . 

Therefore, we can consider the associated long exact sequence in cohomology [ 121: 

. . . + &d(M)) H(r! Hk(M) - H H(L) k+2(h L) Ck+,2 Hk+‘(d(M)) - *a., 

(4) 

where H(i) and H(L) are the induced homomorphisms in cohomology by i and L, re- 
spectively, and ck+2 is the connecting homomorphism defined in the following way: for 
[o] E Hk+*(Im L), then Ck+2[CX] = [d/I] for j? E Ak(M) such that LB = 01. 

From Proposition 2.1 we know that Im k+2 L = Ak+*(M) for k > n - 1. As a 
consequence, 

Hk+*(Irn L) = Hk+*(M) 

fork 2 n. Furthermore, the long exact sequence in cohomology (4) may be expressed as 

. . . + Hk(d(M)) !i!!j Hk(M) H(4) Hk+* (M) Ce+? Hk+‘(d(M)) + . * - (5) 

for such degrees. Now, we shall decompose the long exact sequence (5) in 5-term exact 
sequences: 

0 + Ker H(i) 

H(L) = ImCk+t i Hk(d(M)) 3’ Hk(M) -_, H k+2(M) “3’ hck+2 + 0. (6) 

If M is of finite type, the de Rham cohomology groups have finite dimension. Denote by 
bk (M) = dim Hk (M) the Betti numbers of M. Since 0 5 dim(Im ck) ( bk (M) for 
k 2 n + 2 we have the following result. 
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Proposition 3.1. Let A4 be a symplectic 2n-dimensional manifold ofjinite type. Then the 
coeffective cohomology group Hk(d(M)) has$nite dimension for k ? n + 1. Thus, we 
define the coeflective numbers ck (M) = dim Hk (d(M)) for k # n. (Remember that ck = 0 
fork 5 n - 1.) 

Remark 3.1. Notice that because the de Rham cohomology groups of a compact manifold 
have finite dimension, we immediately deduce from Proposition 3.1 that the coeffective 
cohomology groups of a compact symplectic 2ndimensional manifold have also finite 
dimension for k # n [4]. 

From (6), we have 

dim(Im Ck+t) - dim Hk(d(M)) + dim Hk(M) - dim Hk+2(M) 

+ dim(Im Ck+2) = 0 

for k 2 n + 1, from which we deduce 

dim(Im Ck+t) - ck(kf) + bk(M) - bk+z(M) + dim(Im Ck+2) = 0. (7) 

Now, we deduce that the coeffective numbers are bounded by upper and lower limits de- 
pending on the Betti numbers of the manifold. 

Theorem 3.1. Fork 2 n + 1, we have 

bk(M) - bk+z(W I ck(M) 5 bk(M) +bk+l(M). (8) 

Now, we shall see the behaviour of some examples of compact symplectic manifolds with 
respect to inequalities (8). The calculation of the coeffective numbers for these examples is 
possible, thanks to a Nomizu’s type theorem for the coeffective cohomology in the cases of 
compact nilmanifolds and completely solvable manifolds given in [lo] (see also Section 6). 

Example 3.1 [l,lO]. Consider the six-dimensional compact nilmanifold R6 = r\G, 
where G is a simply connected nilpotent Lie group of dimension 6 defined by the left 
invariant l-forms {oi, 1 5 i 5 6) such that 

doi = 0, liis3, da4 = -a1 A cz2, 

da5 = -at A 013, do6 = -ot A (~4, 

and r is a discrete and uniform subgroup of G. 
It will be convenient to introduce an abbreviated notation for wedge products; we write 

O!ij = ai A Olj, &!ijk = CX~ A olj A (Yk, and SO forth. 
An easy computation, using Nomizu’s theorem (see Section 6), shows that the de Rham 

cohomology of R6 is: 

H”(R6) = {I}, 

H1(R6) = {[al I, [a217 [~31)1 
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H2@> = {[al519 [a161, 1o231, 1a241, [a3517 ia25 + a3411, 

H3(R6) = {[al351, b1451, [al461t h561r [a23419 fa2351, [a24617 [a236 + a2451}, 

H4(R6) = {[al2461, [al25617 [a13561, [a14561t [a234517 [a2346117 

H5(R6) = {[al24561t [4134561, [a234561}, 

@(R6) = {[a1234561}. 

287 

Thus, the first Betti number of R6 is b1(R6) = 3, and hence R6 does not admit KWer 
structures. However, R6 admits symplectic structures. For instance, 

~=al5+~16+a25+a34+~13 

is a symplectic form on R6. Next, using Theorem 6.2, we get 

b4(R6) - b6(R6) = 5 i c4(R6) = 6 < b4(R6) + b5(R6> = 9, 

b5(R6) = C5(R6) = 3 < b5(R6) + brj(R9 = 4. 

Example 3.2 [lo]. Consider the eight-dimensional compact solvmanifold MS = r/G, 
where G is a simply connected completely solvable Lie group of dimension 8 defined by 
the left invariant l-forms {ai, 1 5 i ( S} such that 

dai = 0, lIiF3, 

da4 = -al A cr2, da5 = -a1 AQ~, do6 = -ot Aff4, 

da7 = -at ACQ, das = at A as, 

and r is a uniform subgroup of G. 
As in the above example, we introduce an abbreviated notation for wedge products. The 

manifold M* does not admit K&ler structures since bt(M8) = 3, but it has symplectic 
structures. Indeed, the 2-form given by 

is symplectic. By using Nomizu’s theorem and Theorem 6.2, we have 

b5(M8) - b7(h4*) = 8 = C5(b4*) < b5(M8) + b6(M8) = 18, 

b6(kf8) - bf#!f8) = 6 = C6(b!f8) < b6(h’f*) + b7(hf8) = 10, 

b7(M8) = 3 = c7(M8) < b7(kF) + bg(M8) = 4. 

4. Compact symplectic manifolds 

In this section, we shall use the long exact sequence in cohomology (5) and the Hodge 
theorem [25] to obtain some results on the coeffective cohomology for compact manifolds. 
In particular, we shall prove that the coeffective cohomology is a topological invariant for 
compact K%bler manifolds. 
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Theorem 4.1. Let M be a compact Kiihler manifold of dimension 2n. Then we have 

Q(M) = bk(M) - bk+z(M), k > n + 1. (9) 

Proof To prove this result it is sufficient to show that the mapping Ck+2 identically vanishes, 
then from (7) we obtain relation (9). 

Let a E Hk+2 (M). Let a! be the unique harmonic representative of the de Rham coho- 
mology class a. Since the map L : Ak,(M) -+ Ay2(M) (where Ak,(A4) is the space of 
harmonic k-forms) is surjective fork > n - 1 [4], then there exists a harmonic k-form /3 such 
that L/l = ct. From the definition of the connecting homomorphism, Ck+2[~] = [d/3] = 0. 

0 

Remark 4.1. Since the Betti numbers are topological invariants for compact manifolds 
[25], Theorem 4.1 implies that the coeffective cohomology groups are topological invariants 
for compact Kiihler manifolds. Moreover, since 

bk(M) 1 t&+2(M), k P n, 

for compact Kahler manifolds, we have proved that the coeffective numbers measure these 
jumps on the Betti numbers. 

For a compact K%hler manifold we know that Hk(d(M)) Z fik(A4) for k # n [4] 
but this is not true in general for arbitrary compact symplectic manifolds [l,lO]. For in- 
stance, Examples 3.1 and 3.2 are compact symplectic manifolds which do not satisfy the 
isomorphism (2). 

5. Non-compact symplectic manifolds 

In differential geometry and physics there exist important examples of non-compact 
symplectic manifolds. The main example is R2” with the standard structure, but another 
interesting example is the contangent bundle of a manifold with the canonical exact sym- 
plectic structure [ 16,171. Exact symplectic manifolds are those that occur most commonly in 
mechanical problems and in other physical applications. This section is devoted to the study 
of the coeffective cohomology in the non-compact case. In particular, we shall show which 
of the properties satisfied by the coeffective cohomology for compact K&hler manifolds still 
hold in the non-compact case. 

The first example of a non-compact symplectic manifold is R2” with the standard sym- 
plectic structure wo, that is, 

00 = dxt A dy,+t +...+ dx, A dn2,, 

where (xl, . . . , ~2~) are the natural coordinates on R2”. The Betti numbers of lR2” are well 
known: 

bo(R2”) = 1, bk(R2”) =o fork > 1 - . (10) 
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On the other hand, from a direct computation (see [4]), we obtain the coeffective numbers 
for the standard symplectic structure ~0 on R2n: 

c~([W~~) = 0 fork # n. 

More than this, we have the following. 

Proposition 5.1. Let w be any symplectic structure on (W2n (notice that there exist exotic 
symplectic structures on [w2”, that is, no standard symplectic structures [2,13,19]) or on 
any smooth manifold M homeomorphic to [w2”. Then 

Q(M) = c~([W~~) = 0 fork # n. 

Also, the isomolphism (2) between the coeffective cohomology and the de Rham cohomology 
truncated by [w] is satisfiedfor k # n. 

Proof The result for R2” is obtained directly from (10) and (5). Moreover, if M is homeo- 
morphic to R2n, then bk (M) = b k ( IW2n) and the result follows as for R2n. 0 

Some partial results of the above situation are given in the following theorems. 

Theorem 5.1 [ 181. The Kahlerform w on a simply connected complete Kahler 2n-dimen- 
sional mantfold M of non-positive sectional curvature is dtfleomorphic to the standard 
symplectic form c-00 on Iw 2n This means in particular that the symplectic structure on a . 
Hermitian symmetric space of non-compact type is standard. 

Theorem 5.2 (McDuff, Floer, Eliashberg [5]). Suppose that a 2n-dimensiona manifold M 
is asymptotically flat and contains no symplectic spheres. Then M is diffeomorphic to IW2n. 

Let us recall [5] that a non-compact symplectic manifold M of dimension 2n is asymp- 
totically$at if there is a compact set K1 c M2n and a compact set K2 c R2” so that M\Kl 
is symplectomorphic to R2’ \ K2 (with the standard symplectic structure). 

Now, if we consider a symplectic structure on a non-compact complete Riemannian 
manifold of positive sectional curvature, then we also are in the conditions of Proposition 5.1, 
as it is shown in the following theorem. 

Theorem 5.3 [ 111. Every complete Riemannian manifold of positive sectional curvature 
that is non-compact is d@eomorphic to the Euclidean space. 

A particular class of non-compact symplectic manifolds is the class of the exact symplec- 
tic manifolds, that is, those for which the symplectic form o is exact. Note that a compact 
symplectic manifold is never exact. 

We first exhibit an example of exact symplectic manifold which satisfies (2). 

Example 5.1 (The afine group GA(W)). Let GA(W) = Iw” x GL(W) be the group of 
affine transformations of Rn. It is known [3] that the affine group GA(W) admits invariant 
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symplectic structures, and since H*(GA(W”)) = 0 all of them are exact. Moreover, we 
have [12]: 

bk(GA(R”)) = 0, Vk 1 i(n* + n), 

where n* + n is the dimension of GA(W). Therefore, we deduce that 

ck(GA(R”)) = 0, Vk # ;(n* + n), 

and for any symplectic structure on GA(W). Moreover, the isomorphism (2) is satisfied 
fork # i (n* + n). It should be noticed that the affine group GA@?) is not homeomorphic 
to R2n because it has non-zero finite Betti numbers. 

Theorem 5.4. Let M be a (non-compact) exact symplectic manifold of dimension 2n which 
is offinite type. Then 

Q(M) = bk(M) + bk+l(M) fork 2 n + 1. 

ProoJ It is sufficient to show that the mapping H(L) identically vanishes, and then the result 
follows from (5). Assume that w = - dh for some l-form h. Therefore, if [a] E I@(M), 
we have 

H(L)[a] = [La] = (++‘[d(a A h)] = 0. 0 

Remark 5.1. It should be noticed that if M is a non-compact exact symplectic manifold, 
then, by using a similar argument to that in the proof of Theorem 5.4, we conclude that 

i7k(M) = Hk(M) Vk. 

Corollary 5.1. Let M be a (non-compact) exact symplectic manifold of dimension 2n, 
which is offinite type and with bk(M) # 0 for some k such that n + 2 5 k 5 2n. Then 

Hk-‘(A(M)) $Z ii’-‘(M) = Hk-l(M). 

Suppose that M is an exact K%hler manifold satisfying the conditions of Corollary 5.1. 
Then the isomorphism (2) between the coeffective cohomology and the de Rham cohomo- 
logy truncated by the class of the fundamental 2-form is not satisfied, in contrast with the 
compact case. 

Now, we shall show some examples of exact symplectic manifolds. 

Example 5.2 (The symplectt$cation of a contact mantfold). Let M be a compact contact 
manifold of dimension 2n + 1 with contact structure r]. The symplectification of the contact 
manifold M is the following exact symplectic manifold of dimension 2(n + l), %? = M x R, 
and the symplectic structure on % is 

w = d(e’r]) = et dt A v + et dq. 



h4. Ferndndez et al. /Journal of Geometry and Physics 27 (1998) 281-296 

Taking into account the Kihtneth formula we have that 

b&V) = k+(M). 

291 

Moreover, if bk(M) # 0 for some k such that n + 3 < k 5 2n, then % satisfies the 
conditions of Corollary 5.1, and then the isomorphism (2) is not satisfied. Let us see a 
particular example of this situation. 

If the contact manifold M is a Sasakian manifold, then its symplectification ?i? is a 
non-compact exact K5hler manifold [22]. For instance, let M(r, 1) = r\G be the (2r + l)- 
dimensional compact nilmanifold, where G is a simply connected nilpotent Lie group of 
dimension (2r + 1) defined by the left invariant l-forms {ai, pi, y 1 1 5 i 5 r} such that 

dai = dpi = 0, 

and r is a discrete and uniform subgroup of G. Then a contact structure on M(r, 1) is 
given by the contact form n = y. In [7] it has been proved that this structure is Sasakian. 
Moreover, bk(M(r, 1)) # 0 for any 0 5 k 5 2r + 1. 

Therefore, we have the following result. 

Theorem 5.5. For the non-compact exact Kiihler manifold M(r, l), the isomorphism (2) 
between the coeffective cohomology and the de Rham cohomology (truncated by the class 
of the symplectic form) is not satisfied. 

6. Coeffective cohomology, Lie groups and homogeneous spaces 

The main problem to construct examples of compact symplectic manifolds not satisfying 
the isomorphism (2) is the difficulty to compute the coeffective cohomology. In [lo] we 
have proved a Nomizu’s type theorem for compact symplectic nilmanifolds and completely 
solvable manifolds. In this section we shall prove such result by a more simple method 
using the long exact sequence in cohomology (5). 

Let M = r\G be a compact nilmanifold, that is, G is a connected nilpotent Lie group 
with discrete subgroup r such that the space of right cosets r\G is compact. Let 

. . . + nk-‘(g*) 5 Ak(g*) L nk+l(g*) + . . . 

be the differential complex where Ak(g*) denotes the space of left invariant k-forms on G. 
Its cohomology H*(g*) is the Chevalley-Eilenberg cohomology of the Lie algebra g of G. 
We have [21]: 

Theorem 6.1 (Nomizu [21]). Let M = r\G be a compact nilmanifold. Then there exists 
an isomorphism of cohomology groups 

Hk(g*) E Hk(M). 
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(Notice that the natural map mdR : Hk(g*) + Hk(M) defmed by mdR[(Y*] = [a], where 
a* E Ak(g*) and a is the projected k-form on M, is a linear isomorphism.) 

Now, let w be a symplectic structure on M that comes from a left invariant symplectic 
form w* on G. Consider now the differential subcomplex of coeffective left invariant forms 

. . - dk-‘(a*) 5 dk(g*) L dk+‘(g*) + . . . , 

whose cohomology is denoted by H * (A( a*)). 
By similar arguments that those used in Section 3, if we define the mapping L* : 

Ak(g*) + Ak+2(g*) by La* = cx* A o*, then for any degree we get the short exact 
sequence 

0 + Ker L* = dk(g*) i’\ Ak(g*) L*, Imk+2 L* -+ 0 

and, since L* and d commute, the associated long exact sequence on cohomology similar 
to (4) but for left invariant forms. As L* is surjective in the same degrees as L (see [lo]), 
then for k 2 n we deduce that 

. . . + Hk(d(g*)) H(i:) Hk(g*) < H H(L ) k+2(g) % Hk+’ (A@*)) + *.. 

(11) 

Theorem 6.2 [lo]. Let G be a connected nilpotent Lie group endowed with a left invariant 
symplectic structure o* and with a discrete subgroup r such that the space of right cosets 
M = r\G is compact. Then the natural mapping m, : Hk(d(g*)) + Hk(d(M)), 
dejned by m,{a*} = {a}, is an isomolphism of cohomology groups. 

ProoJ: Consider the long exact sequences in cohomology (5) and (1 l), and the mappings 
mdR, Illc, that is, 

. . . + Hk(A(M)) 9 Hk(M) “(L? H k+2(M) ckf? Hk+‘(&M)) ---_, . . . 

Tmc T-a Tma Tmc 

. . ---, ffk(/Q*)) “(i:) Hk(g*) “(L:) Hk+2(g*) ?!$? Hk+l(d(g*)) - . . . 

for k > n + 1. Since all the diagrams commute and the mappings mdR are linear isomor- 
phisms from Nomizu’s theorem (Theorem 6.1), then m, are also linear isomorphisms for 
k>n+l. 0 

(Notice that we have denoted by [.I the de Rham cohomology classes and by {.} the 
coeffective cohomology classes.) 

Remark 6.1. It should be noted that for k = n we obtain an injective homomorphism 

H”(d(g*)) - H”(d(W). 
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Since Hattori [14] has proved that the result of Nomizu’s theorem holds for compact 
completely solvable manifolds, then the same arguments as in Theorem 6.2 allow us to 
prove the following. 

Theorem 6.3 [lo]. Let G be a connected completely solvable Lie group endowed with a left 
invariant symplectic structure w* and with a discrete subgroup r such that the space of right 
cosets M = r\G is compact. Then the natural mapping m, : Hk(A(g*)) + Hk(d(M)), 
defined by m,{a*} = {a), is an isomorphism of cohomology groups. 

Theorems 6.2 and 6.3 have permitted us the calculation of the coeffective cohomology of 
the examples of compact symplectic nilmanifolds and completely solvable manifolds that 
appear in this article. 

The above method using the long exact sequence in cohomology (5) can be applied to 
prove other results on the calculation of the coeffective cohomology as we show below. 

First, let us recall the following theorem due to Raghunathan [23]: let G be a simply 
connected and solvable Lie group and let r c G be a lattice such that Ad r and Ad G 
have the same Zariski closures Auta,(g), then Hk(r\G) % Hk(g*). Hence, we have: 

Theorem 6.4. Let G be a simply connected and solvable Lie group with a left invariant 
symplectic structure w*, and let r c G be a lattice such that Ad r and Ad G have the 
same Zariski closures Aut@(g). Then Hk(d(r\G)) Z Hk(d(g*)). 

Finally, a well-known result by E. Cartan [12] states that for a connected compact Lie 
group we have Hk(G) E Hk(g*). Thus, we can obtain a similar result for the coeffective 
cohomology of a connected compact Lie group with a left invariant symplectic structure. 

7. Deformation of symplectic structures 

The purpose of this section is to study the variation of the coeffective cohomology if we 
perform a deformation of the symplectic structure on a compact manifold. In Section 4, we 
have already partially answered to this question; more precisely, we have proved that if in a 
compact K%hler we change the Kahler structure for another one, the coeffective cohomology 
remains invariant. 

First of all, let us recall the following result by Moser [5,20,24]. 

Theorem 7.1. Zf M is a compact manifold of dimension 2n and cot, for t E [0, 11, is a 
continuous 1 -parameterfamily of smooth symplectic structures on M which has the property 
that the cohomology classes [cot] in H*(M) are independent oft, then for each t E [0, 11, 
there exists a diffeomorphism d+ such c&+(o,) = 00 (that is, & is a symplectomorphism.) 

The following definitions can be found in [19]. Two symplectic forms ~0 and wr are 
said to be homotopic if they can be joined by a smooth homotopy of non-degenerate two 
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forms mt, 0 5 t 5 1. If, moreover, wI is symplectic for every t, they are called deformation 
equivalent (orpesudo-isotopic), and isotopic if, in addition, all of them are cohomologous. 

Corollary 7.1. For a compact manifold M of dimension 2n with a symplectic structure o, 
the coeffective cohomology does not depend on o, but on the isotopy class of w. 

Remark 7.1. It should be noticed that Theorem 7.1 does not hold for non-compact sym- 
plectic manifolds (see [5] for a counterexample). 

But, we shall see, by constructing an example, that the coeffective cohomology is not 
invariant under deformations of the symplectic structure. 

Example 7.1. Let R6 be the six-dimensional compact nilmanifold mentioned in 
Section 4. 

Consider the continuous l-parameter family of closed 2-forms on R6 given by: 

at = (2 - lb15 + al6 + (2 - t)(a25 + (1134) + (t - 1>@24 + (235). 

An easy computation shows that 

W: = 2(3 - %123456, 

from which we deduce that ot defines a continuous l-parameter family of symplectic 
stuctures on R6 for t # i. 

Now, from Theorem 6.2 we compute the coeffective cohomology groups for the sym- 
plectic structures Wt : 

fJ4(d(R6, W>> = {@1456}, h246 - (t - lb234513 h256 - (2 - tb2345}t 

h356 + (t - 1)42345}, b2346 + (2 - tb2345)r e(t>h245)), 

Hk(d(R6, ot)) = Hk(R6), k = 5,6, (12) 

where the function e(t) takes the value 1 for t = 1 and the value 0 for t # 1. 
Then, from (12) we obtain 

c4(R6, Wt) = 5 + e(t). (13) 

Therefore, the symplectic structures on R6, 

WO = 2q5 + (1116 + 2a25 + 2U34 - a24 - (r35 and W = a15 + a16 + a25 + a34 

are deformation equivalent but their coeffective cohomology is not the same. Indeed, from 
(13) we have that c4(R6, wg) = 5 # 6 = c4(R6, ol), that is, 

H4(d(R6, ~0)) 7 H4(d(R6, 01)). 

In [ 191 the authors look for the existence of families of distinct symplectic structures on 
the same manifold; as a particular case, they are interested in symplectic structures that are 
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deformation equivalent, but not symplectomorphic. In this direction, we have the following 
result. 

Theorem 7.2. The symplectic structures WCJ and 01 dejined on the compact nilmanifold R6 
are deformation equivalent but not symplectomorphic. 

Proofi Taking into account that the symplectic structures ~0 and 01 have different coeffec- 
tive cohomology, then they cannot be symplectomorphic. 0 

Remark 7.2. Note that in fact, we have obtained a stronger result. If we consider ij, = 
(l/(3 - 2t))w,, then we have a continuous l-parameter family of symplectic structures with 
the same volume form. Therefore, the above example gives us an example of symplectic 
structures, with the same volume form, deformation equivalent by a family that preserves the 
volume form, but with different coeffective cohomology, and then not symplectomorphic. 
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